
June 1998 The Delphi Magazine 43

Under Construction:
Database Web Server Extensions
by Bob Swart

In this article we’ll turn our real
live database application on the

internet from the last issue into a
web server extension DLL, using
core ISAPI techniques. As with last
month’s article, we’ll do this with-
out Web Modules, so you don’t
need the Client/Server Edition of
Delphi 3 to try this for yourself!
Along the way, we’ll encounter and
overcome some BDE limitations.

CGI Versus ISAPI
Last month, we encountered a sig-
nificant problem with CGI database
applications: performance. For
every request, the CGI application
has to be loaded, the entire BDE
has to be loaded, the table has to
be opened, the current record
must be found, followed by an
optional update of the current
record (if the data appears to have
changed), performing the Action
(one of the buttons the user clicks
in the HTML form), dynamically
generating the HTML CGI Form
again with all the information, and
finally shutting down the CGI appli-
cation and the BDE. Whew! The
load and unload times especially
weigh heavily on the response
times for even our simple example.

This month, we’ll find out how
we can improve the performance
of the CGI application by turning it
into an ISAPI application. Techni-
cally, this should mean only a few
changes: the application must
become a DLL, conform to the
ISAPI API and should probably use
a slightly different method of

obtaining the values of the CGI vari-
ables. We’ll also find out how we
must change the way we work with
the BDE to prevent clashes
between multiple users. But first,
let’s examine some ISAPI basics.

The architectural difference
between CGI applications and
ISAPI web server extensions can be
depicted as in Figure 1 (these two
figures are taken from a paper by
Diane Rogers, which can be found
on the Inprise website).

ISAPI
ISAPI stands for the Internet Server
API, and offers us the ability to
write server-side DLLs that are just
like CGI applications, but they run
in the same memory space as the
web server (thereby extending the
web server’s capabilities, hence
the name web server extensions).
ISAPI is implemented on the Micro-
soft Internet Information Server
(IIS) and other ISAPI-compliant
web servers. In practice, I only
have experience with IIS 3.0 and IIS
4.0, but these seem to work just
fine with the techniques I used.

There are two references on
Microsoft’s website for more infor-
mation on ISAPI. The first one is an
overview of ISAPI and can be found
at www.microsoft.com/win32dev/
apiext/isapimrg.htm. The second
is the reference manual for the API,
which is at www.microsoft.com/
win32dev/apiext/ isapiref.htm.

Another helpful article from the
Microsoft website is simply called
ISAPI Programming, and is from the

Microsoft Interactive Developer,
January 1997 (at www.microsoft.
com/mind/0197/isapi.htm). This
says that ‘server-side CGI scripting
is inefficient; a process is started
every time, and on Windows NT this
technique is very costly. But you can
achieve a dramatic improvement
over CGI scripting with the Internet
Server API framework.’

ISAPI DLLs live in the same
address space as the HTTP server.
They can therefore directly access
the HTTP services available from
the server. They load into memory
more quickly and have much less
overhead when it comes to making
a call from the server. This can be
particularly helpful if you are work-
ing under a heavy load. Unfortu-
nately, this also means that the
ISAPI DLL can bring down the web
server if it goes wrong.

You can control when the DLL is
loaded or unloaded. For instance,
it is possible to preload DLLs for
fast access on the first try or
unload the ISAPI Applications DLLs
that are not being used in order to
free system resources. Unfortu-
nately, you must sit at the web
server console to unload ISAPI
DLLs: I found no way to unload
them from a remote location.

Delphi Support
Delphi 3 includes two support
units for ISAPI: in C:\Program
Files\Delphi 3\Source\RTL I found
a unit ISAPI.PAS as well as a unit

➤ Figure 1

44 The Delphi Magazine Issue 34

called ISAPI2.PAS. These are for ver-
sions 1 and 2 respectively of the
HTTP Server Extension Interface.
Since an ISAPI version 2 compliant
server will also support version 1, I
decided to use the basic ISAPI.PAS
file for this article. The original
Delphi 3 Professional did not
include these units, by the way, but
they can be found on Inprise’s web-
site (www.inprise.com, go to
Developer Support, Delphi, Down-
loads, file WEBAPI.ZIP).

The unit ISAPI.PAS can also be
used with Delphi 2, although you

function GetExtensionVersion(var Ver: THSE_VERSION_INFO): BOOL; stdcall;
function HttpExtensionProc(var ECB: TEXTENSION_CONTROL_BLOCK): DWORD; stdcall;
function TerminateExtension(dwFlags: DWORD): BOOL; stdcall;

➤ Listing 1

function GetExtensionVersion(var Ver: THSE_VERSION_INFO): BOOL; stdcall;
begin
Ver.dwExtensionVersion := $00010000; // we are interested in HTTP 1.0 support
Ver.lpszExtensionDesc := 'Delphi 3 ISAPI DLL'; // Description of our ISAPI DLL
Result := True

end {GetExtensionVersion};

➤ Listing 2

either have to remove the line with
{$WEAKPACKAGEUNIT}, or put it
between {$IFNDEF VER90} and
{$ENDIF} compiler directives.

ISAPI.PAS contains the interface
to ISAPI, including the three func-
tions that serve as entry points to
ISAPI DLLs: see Listing 1. The first
two are mandatory, while the third
one, not defined in ISAPI.PAS by the
way, is optional.

In our ISAPI DLL, we must export
the first two functions in Listing 1 (I
usually skip the TerminateExten-
sion clean up function, as I do the
clean up in the HttpExtensionProc
itself anyway) to make sure the

PEXTENSION_CONTROL_BLOCK = ^TEXTENSION_CONTROL_BLOCK;
TEXTENSION_CONTROL_BLOCK = packed record
cbSize: DWORD; // = sizeof(TEXTENSION_CONTROL_BLOCK)
dwVersion: DWORD; // version info of this spec
ConnID: HCONN; // Context ID (unique) Do not modify!
dwHttpStatusCode: DWORD; // HTTP Status code
// null terminated log info specific to this Extension DLL
lpszLogData: array [0..HSE_LOG_BUFFER_LEN-1] of Char;
lpszMethod: PChar; // REQUEST_METHOD
lpszQueryString: PChar; // QUERY_STRING
lpszPathInfo: PChar; // PATH_INFO
lpszPathTranslated: PChar; // PATH_TRANSLATED
cbTotalBytes: DWORD; // Total bytes from client
cbAvailable: DWORD; // Available number of bytes
lpbData: Pointer; // pointer to cbAvailable bytes
lpszContentType: PChar; // CONTENT_TYPE
GetServerVariable: TGetServerVariableProc;
WriteClient: TWriteClientProc;
ReadClient: TReadClientProc;
ServerSupportFunction: TServerSupportFunctionProc;

end {TExtensionControlBlock};

➤ Listing 3

web server can load the ISAPI DLL
and use GetProcAddress to get to
the functions GetExtensionVersion
and HttpExtensionProc.

GetExtensionVersion
The exported function GetExten-
sionVersion (Listing 2) is used to
tell the web server who we are, and
which level of HTTP support we
expect. In our case, we expect
HTTP 1.0 support.

TEXTENSION_CONTROL_BLOCK
The exported function HttpExten-
sionProc is the main entry point for
the DLL. This is where the work is
done. The function gets one argu-
ment, ECB, of type TEXTENSION_CON-
TROL_BLOCK, defined in Listing 3.

The first parameter of this
record is set to the size of the TEX-
TENSION_CONTROL_BLOCK, the second
contains the HTTP version info,
while the third contains our unique
connection ID. We are not allowed
to change any of these first three
fields: they are filled by the web
server upon calling the ISAPI DLL.

In a CGI Application, we access
DOS environment variables to get
the REQUEST_METHOD and after that
the CONTENT_LENGTH (for POST) or
QUERY_STRING (For GET). In an ISAPI
DLL, we can use the argument ECB
of type TEXTENSION_CONTROL_BLOCK
we get in HttpExtensionProc, and
look at the field lpszMethod to see if
we’re dealing with POST or GET. For
the POST protocol, we need to look
at lpdData (which contains cbA-
vailable bytes), while for GET we
can get the input query from
lpszQueryString. If the POSTed data
contains more than 48Kb, then we
should call ECB’s ReadClient to get
the remaining data from the web
server (only the first 48Kb are put
in ECB.lpbData or ECB.lpszQuery-
String fields). The ECB member
function ReadClient is defined as:

function ReadClient(ConnID:
HCONN; Buffer: Pointer;
var Size: DWORD) :
BOOL stdcall;

Apart from the ECB fields that
already embed the REQUEST_METHOD,
QUERY_STRING, PATH_INFO, PATH_TR-
ANSLATED and CONTENT_TYPE, we can

function HttpExtensionProc(var ECB: TEXTENSION_CONTROL_BLOCK): DWORD; stdcall;
var
Str: string;
StrLen: Integer;

begin
ECB.lpszLogData := 'Delphi DLL Log';
ECB.dwHTTPStatusCode := 200;
if ECB.lpszMethod = 'GET' then
Str := 'Method: GET
Data: [' + StrPas(ECB.lpszQueryString) + ']'

else
Str := 'Method: POST
Data: [' + StrPas(PChar(ECB.lpbData)) + ']';

Str := '<HTML>'+ '<HEAD>'+ '<TITLE>Dr.Bob''s ISAPI DLL</TITLE>'+ '</HEAD>' +
'<BODY BGCOLOR=A7B7C7>' + '<H1>Dr.Bob says...</H1>' + '<HR><P>' + Str +
'</BODY>' + '</HTML>';

Str := Format('HTTP/1.0 200 OK'#13#10+'Content-Type: text/html'#13#10+
'Content-Length: %d'#13#10+ 'Content:'#13#10#13#10'%s', [Length(Str), Str]);

StrLen := Length(Str);
ECB.WriteClient(ECB.ConnID, Pointer(Str), StrLen, 0);
Result := HSE_STATUS_SUCCESS

end {HttpExtensionProc};

➤ Listing 4

June 1998 The Delphi Magazine 45

get other ‘environment variables’
with a call to EBC’s GetServerVari-
able function, defined as:

function GetServerVariable(
hConn: HCONN;
VariableName: PChar;
Buffer: Pointer;
var Size: DWORD) :
BOOL stdcall;

➤ Figure 2
We will skip the ServerSupport-
Function for now, but it’s important
to know that WriteClient should be
used to send dynamic HTML back
to the web server (which then
sends it back to the browser):

function WriteClient(ConnID:
HCONN; Buffer: Pointer;
var Bytes: DWORD;
dwReserved: DWORD) :
BOOL stdcall;

HttpExtensionProc
Now that we’ve seen what the ECB
parameter given to the HttpExten-
sionProc routine contains, it’s time
to look at a sample implementa-
tion. As an example, let’s consider
a first ISAPI DLL that returns the
Method (GETor POST) and the query
string or data sent to the DLL itself
(Listing 4).

To use our first ISAPI DLL, we
can put it in the same scripts direc-
tory that we place our CGI applica-
tions in. Just like CGI applications,
ISAPI DLLs can be called either
directly (in a <A HREF...>...
link) or by using it as METHOD in an
HTML Form. If we use the first
ISAPI DLL (from the combined List-
ings 1 to 4, full source code is on
the disk of course), then we get the
result shown in Figure 2.

As we can see, it’s easy to get our
hands on the input data, and we
can use the functions Value and
ValueAsInteger from the last issue
to use just like we’ve been used to.

With respect to the above
output, it’s of course easy to
modify this ISAPI DLL to report

46 The Delphi Magazine Issue 34

more fields of the ECB structure.
The difficult part is actually replac-
ing the ISAPI DLL on the web server
with the new version, as we can’t
overwrite an active DLL. We need
to shut down the WWW service of
the web server to de-activate the
DLL and only then we can over-
write it with a new version. So it’s
not easy to take the RAD approach
when developing ISAPI DLLs, and
that’s not even the biggest
difference between CGI and ISAPI.

CGI ISAPI Differences
Inside a standard CGI application,
we could just write the HTML
codes to standard output. How-
ever, an ISAPI DLL has no standard
output, and we must use the
WriteClient member functions of
the ECB to send HTML codes back
to the client. So, if we want to port
CGI applications to ISAPI, this
means that we need to change
every writeln statement in order to
‘collect’ the data into one big string
that can be sent using WriteClient
when processing is done.
Alternatively, we can call WriteCli-
ent for every previous writeln, but
this may inflict a performance pen-
alty on the web server (all I/O will
be done synchronously, so we’d
better do a small number of I/O
operations so as not to delay other
ISAPI processes).

Fortunately, with the Delphi
AnsiString type, we can just use a
single variable and add pieces of
the response to this long string.
Not unlike the technique used in
Delphi 3 Web Modules, where we
assign an HTML response to the
Response.Content property.

Another difference between CGI
and ISAPI that we saw just earlier is
the fact that the DLL is only loaded
once, at the time of the first
request. So, the first time won’t be
any faster than a CGI application,
but because the DLL stays loaded,
further requests are more efficient.
A rogue ISAPI DLL can of course
bring down the web server (as I
found out, the hard way).

IntraBob for ISAPI
The fact that ISAPI DLLs are hard to
debug was the main reason I
decided to enhance IntraBob, my

➤ Figure 3
CGI Debugger) with ISAPI capabili-
ties as well. IntraBob v3.0,
included on the disk with this
issue, is now also able to load ISAPI
DLLs, that can be debugged from
within the Delphi 3 IDE (just spec-
ify IntraBob to be the ‘Host Appli-
cation’ for the ISAPI DLL). If you set
it up this way, you can specify
breakpoints inside your ISAPI DLL,
and once inside a breakpoint, you
can even use Code Insight to get a
tooltip with the current value of
the ECB (Figure 3). Great! Debug-
ging ISAPI without a web server or
browser: quite handy, if I may say
so myself [I can feel the heat of the
satisfied glow from here! Ed].

Multithreading
Another, very important, differ-
ence between CGI and ISAPI is that
each invocation of an ISAPI DLL
should be considered a thread
within a single application. The
Delphi 3 Developer’s Guide, Chap-
ter 3, discusses multithreaded
database applications. Specifi-
cally, it says that they require mul-
tiple sessions. We’ll examine this
in detail in the next section.

Apart from sessions, multi-
threading means that we should
avoid the use of global variables,
or wrap them inside critical
sections. The functions Value and
ValueAsInteger from unit DrBobCGI,
presented in the last issue, will
have to be modified to work on

local data (on the stack of the
HttpExtensionProc routine for
example) as opposed to global
data that is shared by all sessions.
This also means they have to be
embedded inside any ISAPI DLL we
write and cannot be part of a global
unit (unless you want to pass the
data itself as an argument, I don’t).

Another important observation
on this topic is that pre-initialised
variables (in the global data seg-
ment) don’t work as expected in an
ISAPI DLL. Of course, they have the
right value the first time we
encounter them, but after we’ve
changed them, subsequent
threads will get the updated value
instead of the initial value!

Finally, it seems that Microsoft’s
IIS creates a thread for the ISAPI
DLL using standard Windows API
calls and, as a consequence, the
Delphi BeginThread RTL function is
not called. If this routine is not
called, to create a thread within
the context of a Delphi DLL, then
the variable IsMultiThread is never
set to True and memory allocations
by Delphi’s memory manager are
not thread-safe! The fix is easy: add
the line IsMultiThread := True to
the initialization of the ISAPI DLL.

ISAPI Wrapper
If we temporarily skip the actual
generation of HTML code (inside a

June 1998 The Delphi Magazine 47

library BERT;
{.$DEFINE DEBUG}
uses
Windows, SysUtils, ISAPI, IniFiles, DB, DBTables;

function GetExtensionVersion(var Ver: THSE_VERSION_INFO):
BOOL; stdcall;

begin
Ver.dwExtensionVersion := $00010000; // 1.0 support
Ver.lpszExtensionDesc := 'Delphi 3.0 ISAPI DLL';
Result := True;

end {GetExtensionVersion};
function HttpExtensionProc(
var ECB: TEXTENSION_CONTROL_BLOCK): DWORD; stdcall;

var
Data: AnsiString; // Contains ISAPI input data
function Value(const Field: ShortString): ShortString;
var
i: Integer;
len: Byte absolute Result;

begin
Len := 0;
i := Pos('&'+Field+'=',Data);
if i = 0 then begin
i := Pos(Field+'=',Data);
if i > 1 then i := 0

end else
Inc(i); { skip '&' }

if i > 0 then begin
Inc(i,Length(Field)+1);
while Data[i] <> '&' do begin
if not (Data[i] in [#10,#13]) then begin
{ ignore CR/LF }
Inc(Len);
Result[Len] := Data[i]

end else begin
{ CR/LF -> #32 }
if (Len = 0) or (Result[Len] <> #32) then begin
Inc(Len);
Result[Len] := #32

end
end;
Inc(i)

end
end;
while (Len > 0) and (Result[len] = #32) do
Dec(len)

end {Value};
function ValueAsInteger(const Field: ShortString):
Integer;

begin
try
Result := StrToInt(Value(Field))

except
Result := 0

end
end {ValueAsInteger};

{$I BERT.INC}
{ see next listing for procedure
GenerateContents(var Str: String); }
var
i: Integer;
Str: AnsiString;

begin

Str := 'Hello, world!';
try
try
// parse ECB input data
if StrPas(ECB.lpszMethod) = 'POST' then
Data := StrPas(ECB.lpbData)

else
Data := ECB.lpszQueryString;

if (Length(Data) > 1) and (Data[Length(Data)] = #0)
then Delete(Data,Length(Data),1);

i := 0;
while i < Length(Data) do begin
Inc(i);
if Data[i] = '+' then Data[i] := ' ';
if Data[i] = '%' then begin
{ special code }
Str := '$00';
Str[2] := Data[i+1];
Str[3] := Data[i+2];
Delete(Data,i+1,2);
Data[i] := Chr(StrToInt(Str))

end
end;
if i > 0 then
Data[i+1] := '&'

else
Data := '&';

// initialize ECB output data
ECB.lpszLogData :=
'BERT - Bolesian Error Report Tool';

ECB.dwHTTPStatusCode := 200;
// create the dynamic HTML webpage here inside STR
try
GenerateContents(Str); // see BERT.INC
Str := '[' + Data + ']<P>' + Str

except
on E: Exception do
Str := Str + '<P>IN<P><HR><P>' + E.ClassName +
' ' + E.Message

end;
except
on E: Exception do
Str := Str + '<P>OUT<P><HR><P>' + E.ClassName +
' ' + E.Message

end;
finally
// finalize ECB output data
Str := Format('HTTP/1.0 200 OK'#13#10+
'Content-Type: text/html'#13#10+
'Content-Length: %d'#13#10+
'Content:'#13#10#13#10'%s', [Length(Str), Str]);

i := Length(Str);
ECB.WriteClient(ECB.ConnID, Pointer(Str), i, 0)

end;
Result := HSE_STATUS_SUCCESS

end {HttpExtensionProc};
exports
GetExtensionVersion,
HttpExtensionProc;

begin
IsMultiThread := True

end.

➤ Listing 5

single Long String variable called
Str) and focus on the ISAPI wrap-
per for BERT, the Bolesian Error
Report Tool we designed and
implemented as a CGI application
last time, we come to the source
code in Listing 5.

Note that this wrapper doesn’t
even access the BDE or any data-
base components. That’s all left for
the last part of this article, in the
included file BERT.INC.

ISAPI And The BDE
Given the information provided so
far, it should be obvious that we
can write just about any ISAPI
application (based on the ISAPI
wrapper in the previous listing, for

example). However, there’s still
one more area we need to cover
and that’s database ISAPI applica-
tions or, more specifically, ISAPI
and the Borland Database Engine.
First of all, it’s very important to
have the latest version of the BDE
installed, which may be found on
Inprise’s website at www.inprise.
com/bde/. Currently, I’m using the
BDE version 4.51, with the patch
from the website.

Apart from that, we have already
learned from the manuals (we
always read the manuals, right?)
that multithreaded database appli-
cations require multiple sessions.
This is easy to forget, and at first an
ISAPI DLL that uses only one
(default) session seems to work
fine. Until you perform a second

request, that is, which just fails,
returning an empty result page. It’s
not even possible to catch excep-
tions here, as the BDE will simply
detect that the session is already
in use, terminating the request,
resulting in a lost connection and
no result set. Only after a while,
when the original request (and
session) is de-activated (ie com-
pleted), does the session become
available again. Once you realise
that each thread must have its own
session with the AutoSessionname
set to True (to get a unique session
name, which can then be assigned
to the TTable components inside
this particular ISAPI thread).

The maximum number of con-
current BDE sessions is 32. This
means that the BDE may not be

48 The Delphi Magazine Issue 34

suitable for high traffic sites unless
you work out some way of schedul-
ing the connections (which, by the
way, is implemented by Delphi 3
Web Modules).

The include file BERT.INC con-
tains the local procedure Generate-
Contents, which in its turn can call
the local routines Value and Val-
ueAsInteger (that work on the Data
variable on the local stack for this
thread). Note that we need to store
the dynamic HTML that we gener-
ate in a single Long String (called
Str), which is sent back to the
client using a single WriteClient,
see Listing 6.

For each request, which trans-
lates into a thread, we dynamically
create a TSession, activate it (to get
the unique SessionName), create a
TTable, assign its SessionName prop-
erty to the Session.SessionName,
and free both the TTable and the
TSession afterwards. The main per-
formance gain lies in initialization
of the BDE, which will be available
after the very first request.

If we test both BERT.DLL and
BERT.EXE (from last month) online,
we’ll find that BERT as an ISAPI DLL
starts with the same speed (or lack
thereof) as the CGI application.

However, after the initial load of
the BERT.DLL and BDE files, all
subsequent requests are much
faster. Even with multiple users
walking through a single table,
updating records, deleting or
inserting records, it’s fast. As long
as we don’t have more than a few
dozen connections we shouldn’t
get into problems.

If we ever need more than the
BDE’s maximum 32 sessions I
guess that means it is time to inves-
tigate a three tier solution using
the Inprise middleware tools like
MIDAS, Entera or CORBA and the
VisiBroker Object Request Broker.
At least we’ll know for sure that
these tools will have no problem
integrating in our current and
future Borland Delphi environ-
ment (as we shall see in a future
article, I promise...).

Framework
All in all, the end result from this
month’s column is not a truly
generic source framework, like
that we produced for Delphi CGI
applications, but we can of course
still use the final source code as a
template for future ISAPI database
DLLs.

As long as we keep in mind that
ISAPI DLLs are multithreaded and
each thread requires a unique Ses-
sion, we shouldn’t encounter too
many problems along the way.
Until we need to upgrade to a three
tier solution, that is.

Remember also that it’s always
helpful to be able to test and debug
an ISAPI DLL on a local machine,
using IntraBob 3.0, in order to
avoid an accidental programming
error bringing down the web
server. Even if it’s an accident,
your web server administrator
may sometimes forgive but seldom
forget these bad experiences!

Next Time
Last month, I also promised to
design some nice HTML CGI-Forms
to find a given record in the table,
or to perform a dynamic SQL query
and display the results as well.
Time and space constraints unfor-
tunately prevent me from report-
ing on these two issues. However,
I’m sure the ISAPI techniques I’ve
presented in this paper are more
than enough to keep you going for
a little while.

➤ Listing 6

procedure GenerateContents(var Str: String);
const IniFile = '.\report.ini';
procedure DataSetTable(DataSet: TDataSet; NewRec: Boolean);
{ NEW RECORD, Actions: POST,CANCEL }
{ BROWSE RECORD, Actions: FIRST,PREV,NEXT,LAST,INSERT,DELETE,REFRESH}
const
Int: Array[1..9] of Char = '123456789';

var
i,j,col,items: Integer;
option: ShortString;

begin
{$IFDEF DEBUG}
Str := Str + '<P>';
Str := Str +
'Debug Action: <INPUT TYPE=TEXT NAME=Action>'#13#10;

Str := Str + '<P>';
{$ENDIF}
if NewRec then begin
Str := Str +
'<INPUT TYPE=SUBMIT NAME=Action VALUE=Post>'#13#10;

Str := Str +
'<INPUT TYPE=SUBMIT NAME=Action VALUE=Cancel>'#13#10

end else begin
Str := Str +
'<INPUT TYPE=SUBMIT NAME=Action VALUE=First>'#13#10;

Str := Str +
'<INPUT TYPE=SUBMIT NAME=Action VALUE=Prev>'#13#10;

Str := Str +
'<INPUT TYPE=SUBMIT NAME=Action VALUE=Next>'#13#10;

Str := Str +
'<INPUT TYPE=SUBMIT NAME=Action VALUE=Last>'#13#10;

Str := Str + ' '#13#10;
Str := Str + '<INPUT TYPE=SUBMIT NAME=Action ‘+
‘VALUE=Insert>'#13#10;

Str := Str + '<INPUT TYPE=SUBMIT NAME=Action ‘+
‘VALUE=Delete>'#13#10;

Str := Str + ' '#13#10;
Str := Str +
'<INPUT TYPE=SUBMIT NAME=Action VALUE=Find>'#13#10;

Str := Str +
'<INPUT TYPE=SUBMIT NAME=Action VALUE=Query>'#13#10;

Str := Str +' '#13#10;
Str := Str + '<INPUT TYPE=SUBMIT NAME=Action ‘+
‘VALUE=Refresh>'#13#10;

end;
Str := Str + '<INPUT TYPE=RESET VALUE=Reset>'#13#10;
Str := Str + '<P>'#13#10;
with DataSet do begin
if NewRec then
Str := Str + '<INPUT TYPE=HIDDEN NAME="' +
Fields[0].FieldName+'" VALUE="-1">'#13#10

else
Str := Str + '<INPUT TYPE=HIDDEN NAME="'+
Fields[0].FieldName+'" VALUE="'+
Fields[0].AsString+ '">'#13#10;

Str := Str +'<TABLE BGCOLOR=BBBBBB BORDER><TR>'#13#10;
col := 0;
with TIniFile.Create(IniFile) do
try
for i:=1 to FieldCount-1 do begin
{ first field was hidden }
if Fields[i].DataType = ftMemo then begin
Str := Str + '</TR><TR><TD COLSPAN=3>';
col := 3;

end else
if Fields[i].Size > 99 then begin
Inc(col,2);
if col > 3 then begin
Str := Str + '</TR><TR>';
col := 2

end;
Str := Str + '<TD COLSPAN=2>'

end else begin
Inc(col);
if col > 3 then begin
Str := Str + '</TR>'#13#10'<TR>';
col := 1

end;
Str := Str + '<TD>'

end;
Str := Str +''+ReadString(Fields[i].FieldName,
'Name',Fields[i].FieldName)+'
';

items := ReadInteger(Fields[i].FieldName,
'Items',0);

if items = 0 then begin
if Fields[i].DataType = ftMemo then begin
Str := Str + '<TEXTAREA NAME="'+
Fields[i].FieldName+'" ROWS=6 COLS=72>';

{ ** CONTINUED ON FACING PAGE ---> ** }

June 1998 The Delphi Magazine 49

{ ** CONTINUED FROM FACING PAGE ** }
if not NewRec then
Str := Str + Fields[i].AsString;

Str := Str + '</TEXTAREA>'
end else begin
if Fields[i].Size > 99 then
Str := Str + '<INPUT TYPE=text NAME="'+
Fields[i].FieldName+'" SIZE=64'

else
if Fields[i].Size = 0 then
Str := Str + '<INPUT TYPE=text NAME="'+
Fields[i].FieldName+'" SIZE=30'

else
Str := Str + '<INPUT TYPE=text NAME="'+
Fields[i].FieldName+'" SIZE='+
IntToStr(Fields[i].Size);

if not NewRec then
Str := Str+
' VALUE="'+Fields[i].AsString+'"';

Str := Str + '>'
end

end else begin
Str := Str + '<SELECT NAME="'+
Fields[i].FieldName+'">';

for j:=1 to items do begin
option := ReadString(Fields[i].FieldName,
'Item'+Int[j],Int[j]);

if (not NewRec) and
(option = Fields[i].AsString) then
{ selected }
Str := Str + '<OPTION SELECTED VALUE="'+
option+'">'+option+' '

else
Str := Str + '<OPTION VALUE="'+
option+'">'+option+' '

end;
Str := Str + '</SELECT>'

end;
Str := Str + '</TD>'

end;
Str := Str + '</TR>'#13#10

finally
Str := Str + '</TABLE>'#13#10;
Free

end
end

end;
const
{no alias: ChDir and use current directory on web server}
_DatabaseName = '';
_TableName = 'report.db';
Action: String[7] = '';

var
Table: TTable;
Session: TSession; { IMPORTANT }
Report,i: Integer; { key field }
NoChange: Boolean;

begin
Str := '';
Action := '';
ShortDateFormat := 'DD/MM/YYYY';
GetDir(0,Str);
if IOResult <> 0 then
{ skip };

Str := Str + '<HTML>'#13#10;
with TIniFile.Create(IniFile) do
try
Str := Str + '<HEAD>'#13#10;
Str := Str + '<TITLE>'+ReadString(_TableName,'Name','')+
'</TITLE>'#13#10;

Str := Str + '</HEAD>'#13#10;
Str := Str + '<BODY BGCOLOR=AAAAAA>'#13#10;
Str := Str + '<CENTER>'#13#10;
Str := Str + '<H1>';
Str := Str + '<IMG SRC="'+
ReadString(_TableName,'Bitmap','')+'">';

Str := Str + ReadString(_TableName,'Name','');
Str := Str + '</H1>'#13#10;
Str := Str + '<FORM METHOD=POST ACTION="'+
ReadString(_TableName,'Action','')+'">'#13#10

finally
Free

end;
Session := TSession.Create(nil); // IMPORTANT
Session.AutosessionName := True; // IMPORTANT
Session.Active := True; // IMPORTANT
Table := TTable.Create(nil);
Table.SessionName := Session.SessionName;
with Table do
try
Active := False;
TableType := ttParadox;
{ DatabaseName := _DatabaseName; }
TableName := _TableName;
Open;
First;
{ locate current record }
Report := ValueAsInteger('Report');
if Report > 0 then
FindKey([Report])

else
First;

{ update record if data has changed }
NoChange := True; { assume no change }
if (Value('_'+Fields[0].FieldName) <> '') and
(ValueAsInteger(Fields[0].FieldName) <> -1) then begin
NoChange := True; { assume no change }
for i:=0 to FieldCount-1 do
NoChange := NoChange AND
(Value('_'+Fields[i].FieldName) =
Value(Fields[i].FieldName));

if not NoChange then begin
{ update record. check if data in table is still same }
NoChange := True;
for i:=0 to FieldCount-1 do
NoChange := NoChange AND
(Value('_'+Fields[i].FieldName) =
Fields[i].AsString);

if not NoChange then being
{ table changed!! }
Str := Str + 'Error: value of record changed ‘+
‘before your update was made!';

Action := 'Refresh' { force refresh }
end else begin
{ go ahead! }
Str := Str + 'Note: ';
Edit; { set Table in Edit-mode }
for i:=0 to FieldCount-1 do begin
if (Value('_'+Fields[i].FieldName) <>
Value(Fields[i].FieldName)) then begin
{$IFDEF DEBUG}
Str := Str + IntToStr(i)+'['+Value('_'+
Fields[i].FieldName)+ ']-{'+
Value(Fields[i].FieldName)+ '} ';

{$ENDIF}
Fields[i].AsString :=
Value(Fields[i].FieldName) { new }

end
end;
Post { Post data in Table };
Str := Str + ' previous record updated in table’+
’<P>'#13#10

end
end

end;
{ determine action }
if Action = '' then
Action := Value('Action');

if Action = '' then
Action := 'First';

{ perform action }
if Action = 'First' then
First

else if Action = 'Next' then
Next

else if Action = 'Prev' then
Prior

else if Action = 'Last' then
Last

else if (Action='Find') or (Action='Query') then begin
// TODO: special query CGI-Form

end else if Action = 'Delete' then
Delete

else if Action = 'Insert' then
{ skip }

else if Action = 'Post' then begin
{ insert record }
First;
Report := 0;
while not Eof do begin
if Fields[0].AsInteger > Report then
Report := Fields[0].AsInteger;

Next
end;
Inc(Report);
Insert;
Fields[0].AsInteger := Report;
for i:=1 to FieldCount-1 do
Fields[i].AsString := Value(Fields[i].FieldName);

Post
end else if Action = 'Cancel' then
{ cancel }

else
{ Refresh };

Str := Str + '<P>' + Action + '<P>';
for i:=0 to FieldCount-1 do
Str := Str + '<INPUT TYPE=HIDDEN NAME="_'+
Fields[i].FieldName+ '"VALUE="'+
Fields[i].AsString+ '">'#13#10;

Str := Str + Fields[0].AsString+' - '+IntToStr(RecNo)+
'/'+IntToStr(RecordCount)+ ' '#13#10;

{ generate HTML CGI-Form with fields }
DataSetTable(Table,Action = 'Insert');
Close

finally
Str := Str + '</FORM>'#13#10;
Str := Str + '</BODY>'#13#10;
Str := Str + '</HTML>'#13#10;
Free

end;
Session.Free; // IMPORTANT
Session := nil; // IMPORTANT
Table := nil // IMPORTANT

end;

50 The Delphi Magazine Issue 34

Next month, we’ll explore yet another user feedback
question: how can we send an email message directly
from a web server, without human intervention? Not that
I want you all to become email ‘spammers’ of course,
but there are many other legitimate and useful applica-
tions of such a technique.

This will also be the first step along the way to Robot-
Bob: the automatic ‘intelligent agent’ on the web
server, that can search the web for specified items, and
report its findings by email.

Bob Swart (aka Dr.Bob, visit www.drbob42.com) is a
professional knowledge engineer technical consult-
ant using Delphi, C++Builder and JBuilder for
Bolesian (www.bolesian.com) in The Netherlands. In
his spare time, Bob likes to watch video tapes of Star
Trek Voyager and Deep Space Nine with his 4 year old
son Erik Mark Pascal and his 1.5 year old daughter
Natasha Louise Delphine.

	CGI Versus ISAPI
	ISAPI
	Delphi Support
	GetExtensionVersion
	TEXTENSION_CONTROL_BLOCK
	HttpExtensionProc
	CGI ISAPI Differences
	IntraBob for ISAPI
	Multithreading
	ISAPI Wrapper
	ISAPI And The BDE
	Framework
	Next Time

